Electronic Journal of Graph Theory and Applications

On the signed 2-independence number of graphs

S.M. Hosseini Moghaddam ${ }^{\text {a }}$, D.A. Mojdeh ${ }^{\text {b }}$, Babak Samadi ${ }^{\text {b }}$, Lutz Volkmann ${ }^{\text {c }}$
${ }^{a}$ Qom Azad University, Qom, Iran
${ }^{b}$ Department of Mathematics, University of Mazandaran, Babolsar, Iran
${ }^{c}$ Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany
sm.hosseini1980@yahoo.com, damojdeh@umz.ac.ir, samadibabak62@gmail.com, volkm@math2.rwth-aachen.de

Abstract

In this paper, we study the signed 2-independence number in graphs and give new sharp upper and lower bounds on the signed 2 -independence number of a graph by a simple uniform approach. In this way, we can improve and generalize some known results in this area.

Keywords: domination number, limited packing, tuple domination, signed 2-independence number Mathematics Subject Classification : 05C69
DOI:10.5614/ejgta.2017.5.1.4

1. Introduction

Throughout this paper, let G be a finite connected graph with vertex set $V=V(G)$ and edge set $E=E(G)$. We use [13] as a reference for terminology and notation which are not defined here. The open neighborhood of a vertex v is denoted by $N(v)$, and the closed neighborhood of v is $N[v]=N(v) \cup\{v\}$. The minimum and maximum degree of G are respectively denoted by $\Delta(G)=\Delta$ and $\delta(G)=\delta$.

Let $S \subseteq V$. For a real-valued function $f: V \rightarrow R$ we define $f(S)=\sum_{v \in S} f(v)$. Also, $f(V)$ is the weight of f. A signed 2-independence function, abbreviated S2IF, of G is defined in [14] as a function $f: V \rightarrow\{-1,1\}$ such that $f(N[v]) \leq 1$, for every $v \in V$. The signed 2-independence number, abbreviated S2IN, of G is $\alpha_{s}^{2}(G)=\max \{f(V) \mid f$ is a S2IF of $G\}$. This concept was
defined in [14] as a certain dual of the signed domination number of a graph [3] and has been studied by several authors including [8, 10, 11, 12].

A set $S \subseteq V$ is a dominating set if each vertex in $V \backslash S$ has at least one neighbor in S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set [7]. A subset $B \subseteq V$ is a 2-packing in G if for every pair of vertices $u, v \in B, d(u, v) \geq 3$. The 2-packing number (or packing number) $\rho(G)$ is the maximum cardinality of a 2-packing in G.

Gallant et al. [5] introduced the concept of limited packing in graphs. They exhibited some real-world applications of it to network security, NIMBY, market saturation and codes. In this paper we exhibit an application of it to signed 2-independence number in graphs. In fact as it is defined in [5], a set of vertices $B \subseteq V$ is called a k-limited packing in G provided that for all $v \in V$, we have $|N[v] \cap B| \leq k$. The limited packing number, denoted $L_{k}(G)$, is the largest number of vertices in a k-limited packing set. It is easy to see that $L_{1}(G)=\rho(G)$. In [6], Harary and Haynes introduced the concept of tuple domination in graphs. A set $D \subseteq V$ is a k-tuple dominating set in G if $|N[v] \cap D| \geq k$, for all $v \in V(G)$. The k-tuple domination number, denoted $\gamma_{\times k}(G)$, is the smallest number of vertices in a k-tuple dominating set. When $k=2, D$ is called a double dominating set and the 2-tuple domination number is called the double domination number and is denoted by $d d(G)$. In fact the authors showed that every graph G with $\delta \geq k-1$ has a k-tuple dominating set and hence a k-tuple domination number.

By a simple uniform approach, we derive many new sharp bounds on $\alpha_{s}^{2}(G)$ in terms of several different graph parameters. Some of our results improve some known bounds on the S2IN of graphs in [8, 11, 12].

The authors noted that most of the existing bounds on $\alpha_{s}^{2}(G)$ are lower bounds. In section 2, we prove that $\alpha_{s}^{2}(G) \geq 2\left\lfloor\frac{\delta+2 \rho(G)}{2}\right\rfloor-n$, for a graph G of order n. Also in section 3, by a simple connection between the concepts of limited packing and tuple domination, we obtain the exact value of the signed 2 -independence numbers of regular graphs. In particular, we bound the signed 2-independence numbers of cubic graphs from below and above just in terms of order as, $-\frac{n}{3} \leq \alpha_{s}^{2}(G) \leq 0$.

2. Main results

At this point we are going to present some sharp upper bounds on $\alpha_{s}^{2}(G)$. First, let us introduce some notation. Let $f: V \longrightarrow\{-1,1\}$ be a maximum S2IF of G. We define $V_{+}=\{v \in V \mid f(v)=$ $1\}, V_{-}=\{v \in V \mid f(v)=-1\}, G_{+}=G\left[V_{+}\right]$and $G_{-}=G\left[V_{-}\right]$where G_{+}and G_{-}are the subgraphs of G induced by V_{+}and V_{-}, respectively. For convenience, let $\left[V_{+}, V_{-}\right]$be the set of edges having one end point in V_{+}and the other in V_{-}. Finally, $\operatorname{deg}_{G_{+}}(v)=\left|N(v) \cap V_{+}\right|$and $d e g_{G_{-}}(v)=\left|N(v) \cap V_{-}\right|$. Obviously, $\left|V_{+}\right|=\frac{n+\alpha_{s}^{2}(G)}{2}$ and $\left|V_{-}\right|=\frac{n-\alpha_{s}^{2}(G)}{2}$.

Theorem 2.1. Let G be a graph of order n. Then

$$
\alpha_{s}^{2}(G) \leq\left(\frac{\left\lfloor\frac{\Delta}{2}\right\rfloor-\left\lceil\frac{\delta}{2}\right\rceil+1}{\left\lfloor\frac{\Delta}{2}\right\rfloor+\left\lceil\frac{\delta}{2}\right\rceil+1}\right) n
$$

and this bound is sharp.

Proof. Let f be a maximum S2IF of G. Let $v \in V_{+}$. Since $f(N[v]) \leq 1$, the vertex v has at least $\left\lceil\frac{\operatorname{deg}(v)}{2}\right\rceil \geq\left\lceil\frac{\delta}{2}\right\rceil$ neighbors in V_{-}. Therefore $\left|\left[V_{+}, V_{-}\right]\right| \geq\left\lceil\frac{\delta}{2}\right\rceil\left|V_{+}\right|$. Now let $v \in V_{-}$. Since f is a S2IF, the vertex v has at most $\left\lfloor\frac{\operatorname{deg}(v)}{2}\right\rfloor+1 \leq\left\lfloor\frac{\Delta}{2}\right\rfloor+1$ neighbors in V_{+}. Therefore $\left|\left[V_{+}, V_{-}\right]\right| \leq\left(\left\lfloor\frac{\Delta}{2}\right\rfloor+1\right)\left|V_{-}\right|$. In fact

$$
\left\lceil\frac{\delta}{2}\right\rceil\left|V_{+}\right| \leq\left|\left[V_{+}, V_{-}\right]\right| \leq\left(\left\lfloor\frac{\Delta}{2}\right\rfloor+1\right)\left|V_{-}\right| .
$$

Using $\left|V_{+}\right|=\frac{n+\alpha_{s}^{2}(G)}{2}$ and $\left|V_{-}\right|=\frac{n-\alpha_{s}^{2}(G)}{2}$, we obtain the desired upper bound. For sharpness it is sufficient to consider the complete graph K_{n}.

In [8] the author established a relationship between the signed 2-independence number and the domination number of a graph as follows.

Theorem 2.2. ([8]) If G is a connected graph of order $n \geq 2$, then $\alpha_{s}^{2}(G)+2 \gamma(G) \leq n$, and this bound is sharp.

Now we are going to improve Theorem 2.2. We shall need the following result, which can be found implicit in [4] and explicit in [2] as Corollary 81.

Theorem 2.3. ([2],[4]) If G is a graph with $\delta \geq k-1$, then $\gamma_{\times k}(G) \geq \gamma(G)+k-1$.
Theorem 2.4. If G is a connected graph of order n, then $\alpha_{s}^{2}(G)+2 \gamma(G) \leq n-2\left\lceil\frac{\delta}{2}\right\rceil+2$, and this bound is sharp.
Proof. Let f be a maximum S2IF of G. We have shown that $\left|N[v] \cap V_{-}\right| \geq\left\lceil\frac{\delta}{2}\right\rceil$ for all $v \in V_{+}$. On the other hand, if $v \in V_{-}$, then $\operatorname{deg}_{G_{-}}(v) \geq\left\lceil\frac{\operatorname{deg}(v)}{2}\right\rceil-1 \geq\left\lceil\frac{\delta}{2}\right\rceil-1$. Therefore $\left|N[v\rceil \cap V_{-}\right| \geq\left\lceil\frac{\delta}{2}\right\rceil$. This shows that V_{-}is a $\left\lceil\frac{\delta}{2}\right\rceil$-tuple dominating set in G. This implies, $\left|V_{-}\right| \geq \gamma_{\times\left\lceil\frac{\delta}{2}\right\rceil}(G)$ and hence $\alpha_{s}^{2}(G) \leq n-2 \gamma_{\times\left\lceil\frac{\delta}{2}\right\rceil}(G)$. Now by Theorem 2.3, we have $\alpha_{s}^{2}(G) \leq n-2\left(\gamma(G)+\left\lceil\frac{\delta}{2}\right\rceil-1\right)$. Therefore $\alpha_{s}^{2}(G)+2 \gamma(G) \leq n-2\left\lceil\frac{\delta}{2}\right\rceil+2$. For sharpness it is sufficient to consider the complete graph K_{n}.

By the concept of limited packing we can present a sharp lower bound on $\alpha_{s}^{2}(G)$ that involves the packing number.

Theorem 2.5. Let G be a connected graph of order n. Then

$$
\alpha_{s}^{2}(G) \geq 2\left\lfloor\frac{\delta+2 \rho(G)}{2}\right\rfloor-n
$$

and this bound is sharp.
Proof. Let B be a $\left\lfloor\frac{\delta}{2}\right\rfloor$-limited packing set in G. Obviously, $L_{\left\lfloor\frac{\delta}{2}\right\rfloor}(G) \leq L_{\left\lfloor\frac{\delta}{2}+1\right\rfloor}(G)$. We claim that $B \neq V$. If $B=V$ and $v \in V$ such that $\operatorname{deg}(v)=\Delta$, then $\Delta+1=|N[v] \cap B| \leq\left\lfloor\frac{\delta}{2}\right\rfloor \leq \Delta$, a contradiction. Now let $u \in V-B$. It is easy to check that $|N[v] \cap(B \cup\{u\})| \leq\left\lfloor\frac{\delta}{2}\right\rfloor+1$, for all $v \in V(G)$. Therefore $B \cup\{u\}$ is a $\left(\left\lfloor\frac{\delta}{2}\right\rfloor+1\right)$-limited packing set in G. Hence

$$
L_{\left\lfloor\frac{\delta}{2}\right\rfloor+1}(G) \geq|B \cup\{u\}|=|B|+1=L_{\left\lfloor\frac{\delta}{2}\right\rfloor}(G)+1
$$

Repeating these inequalities, we have

$$
\begin{equation*}
L_{\left\lfloor\frac{\delta}{2}\right\rfloor+1}(G) \geq L_{\left\lfloor\frac{\delta}{2}\right\rfloor}(G)+1 \geq \ldots \geq L_{1}(G)+\left\lfloor\frac{\delta}{2}\right\rfloor=\rho(G)+\left\lfloor\frac{\delta}{2}\right\rfloor . \tag{1}
\end{equation*}
$$

Now let B be a maximum $\left(\left\lfloor\frac{\delta}{2}\right\rfloor+1\right)$-limited packing set in G. We define $f: V \rightarrow\{-1,1\}$ by

$$
f(v)=\left\{\begin{aligned}
1 & \text { if } v \in B \\
-1 & \text { if } v \in V-B
\end{aligned}\right.
$$

We deduce that

$$
\begin{aligned}
f(N[v]) & =|N[v] \cap B|-|N[v] \cap(V-B)| \\
& =2|N[v] \cap B|-|N[v]| \leq 2\left\lfloor\frac{\delta}{2}\right\rfloor-\delta+1 \leq 1,
\end{aligned}
$$

for all $v \in V$. Therefore, f is a S2IF of G. This implies

$$
\alpha_{s}^{2}(G) \geq f(V)=|B|-|V-B|=2|B|-n=2 L_{\left\lfloor\frac{\delta}{2}\right\rfloor+1}(G)-n .
$$

Now (1) implies

$$
\alpha_{s}^{2}(G) \geq 2 L_{\left\lfloor\frac{\delta}{2}\right\rfloor+1}(G)-n \geq 2\left(\rho(G)+\left\lfloor\frac{\delta}{2}\right\rfloor\right)-n
$$

as desired. Considering the graph K_{n} we can see that this bound is sharp.
Volkmann in [11] proved that if G is a graph of order n, then $2-n \leq \alpha_{s}^{2}(G)$. Moreover if $n \geq 3$, then $4-n \leq \alpha_{s}^{2}(G)$. Obviously, the lower bound in Theorem 2.5 is an improvement of the first inequality and when $\delta \geq 2$ this improves the second, as well.
At the end of this section we exhibit a short comment about signed 2-independence number of bipartite graphs. The following upper bound on $\alpha_{s}^{2}(G)$ of a bipartite graph was obtained by Wang [12].

Theorem 2.6. ([12]) If G is a bipartite graph of order $n \geq 2$, then

$$
\alpha_{s}^{2}(G) \leq n+6-2 \sqrt{2 n+9} .
$$

Furthermore, the bound is sharp.
We now improve the bound in the previous theorem.
Theorem 2.7. Let G be a bipartite graph of order n. Then

$$
\alpha_{s}^{2}(G) \leq n+2\left(2+\left\lceil\frac{\delta}{2}\right\rceil\right)-2 \sqrt{\left(2+\left\lceil\frac{\delta}{2}\right\rceil\right)^{2}+2\left\lceil\frac{\delta}{2}\right\rceil n}
$$

and this bound is sharp.

Proof. Let f be a maximum S2IF of G. Let X and Y be the partite sets of G. For convenience we define $X_{+}=X \cap V_{+}, X_{-}=X \cap V_{-}$and let Y_{+}and Y_{-}be defined, analogously. Obviously, $V_{+}=X_{+} \cup Y_{+}$and $V_{-}=X_{-} \cup Y_{-}$.
Since every vertex in X_{+}has at least $\left\lceil\frac{\delta}{2}\right\rceil$ neighbors in Y_{-}, by the pigeonhole principle, there exists a vertex v in Y_{-}that is joined to at least $\frac{\left\lceil\frac{\delta}{\delta}\right\rangle\left|X_{+}\right|}{|Y-|}$ vertices in X_{+}. This implies

$$
\frac{\left\lceil\frac{\delta}{2}\right\rceil\left|X_{+}\right|}{\left|Y_{-}\right|}-\left|X_{-}\right|-1 \leq\left|N[v] \cap X_{+}\right|-\left|N[v] \cap X_{-}\right|-1=f(N[v]) \leq 1
$$

and hence

$$
\begin{equation*}
\left\lceil\frac{\delta}{2}\right\rceil\left|X_{+}\right| \leq\left|Y_{-}\right|\left(\left|X_{-}\right|+2\right) . \tag{2}
\end{equation*}
$$

A similar argument shows that

$$
\begin{equation*}
\left\lceil\frac{\delta}{2}\right\rceil\left|Y_{+}\right| \leq\left|X_{-}\right|\left(\left|Y_{-}\right|+2\right) \tag{3}
\end{equation*}
$$

Using inequalities (2) and (3) we have

$$
\left\lceil\frac{\delta}{2}\right\rceil\left|V_{+}\right| \leq 2\left|X_{-}\right|\left|Y_{-}\right|+2\left|V_{-}\right| \leq \frac{1}{2}\left(\left|X_{-}\right|+\left|Y_{-}\right|\right)^{2}+2\left|V_{-}\right|=\frac{1}{2}\left|V_{-}\right|^{2}+2\left|V_{-}\right| .
$$

Using $\left|V_{+}\right|=n-\left|V_{-}\right|$, we obtain

$$
\left|V_{-}\right|^{2}+\left(4+2\left\lceil\frac{\delta}{2}\right\rceil\right)\left|V_{-}\right|-2\left|V_{-}\right| n \geq 0
$$

This yields to $\left|V_{-}\right| \geq \frac{-4-2\left\lceil\frac{\delta}{2}\right\rceil+\sqrt{\left(4+2\left\lceil\frac{\delta}{2}\right\rceil\right)^{2}+8\left\lceil\frac{\delta}{2}\right\rceil n}}{2}$. Now, by using the value of $\left|V_{-}\right|$we derive the desired bound.

Using calculus we can see that $g(x)=n+2(x+2)-2 \sqrt{(x+2)^{2}+2 n x}$ is a decreasing function for $x \geq 0$. So, for $\delta \geq 1,\left\lceil\frac{\delta}{2}\right\rceil \geq 1$ implies that

$$
n+2\left(2+\left\lceil\frac{\delta}{2}\right\rceil\right)-2 \sqrt{\left(2+\left\lceil\frac{\delta}{2}\right\rceil\right)^{2}+2\left\lceil\frac{\delta}{2}\right\rceil n} \leq n+6-2 \sqrt{2 n+9}
$$

and therefore Theorem 2.7 is an improvement of Theorem 2.6.

3. Remarks on signed 2 -independence in regular graphs

Zelinka [14] obtained the following sharp upper bound on $\alpha_{s}^{2}(G)$ for regular graphs G.
Theorem 3.1. ([14]) If G is an r-regular graph of order n, then $\alpha_{s}^{2}(G) \leq \frac{n}{r+1}$ when r is even and $\alpha_{s}^{2}(G) \leq 0$ when r is odd.

We note that the bound in Theorem 2.1 implies the previous result. The authors in [9] proved the following result.

Lemma 3.1. ([9]) Let G be a graph. Then the following statements hold.
(i) Let $\delta \geq k-1$. If $B \subseteq V$ is a k-limited packing set, then $V-B$ is a $(\delta-k+1)$ - tuple dominating set in G.
(ii) Let $\delta \geq k$. If $D \subseteq V$ is a k-tuple dominating set, then $V-D$ is $a(\Delta-k+1)$-limited packing set in G.

Now, by the above lemma we are able to obtain the exact value of the signed 2-independence number of regular graphs, first in terms of order and limited packing number, second in terms of order and tuple domination number. At the end we bound $\alpha_{s}^{2}(G)$ of a cubic graph G from above and below, just in terms of the order. First we need the following lemma.

Lemma 3.2. Let G be a graph of order n, then
(i) $2 L_{\left\lfloor\frac{\delta}{2}\right\rfloor+1}(G)-n \leq \alpha_{s}^{2}(G) \leq 2 L_{\left\lfloor\frac{\Delta}{2}\right\rfloor+1}(G)-n$,
(ii) $n-2 \gamma_{\times\left\lceil\frac{\Delta}{2}\right\rceil}(G) \leq \alpha_{s}^{2}(G) \leq n-2 \gamma_{\times\left\lceil\frac{\delta}{7}\right\rceil}(G)$.

Proof. (i) In the proof of Theorem 2.5 we have seen that $2 L_{\left\lfloor\frac{\delta}{2}\right\rfloor+1}(G)-n \leq \alpha_{s}^{2}(G)$.
Now let f be a maximum S2IF of G. In the proof of Theorem 2.1 we have shown that $\left|N[v] \cap V_{+}\right| \leq$ $\left\lfloor\frac{\Delta}{2}\right\rfloor+1$, for all $v \in V_{-}$. On the other hand, if $v \in V_{+}$, then $\operatorname{deg}_{G_{+}}(v) \leq\left\lfloor\frac{\operatorname{deg}(v)}{2}\right\rfloor \leq\left\lfloor\frac{\Delta}{2}\right\rfloor$. Therefore V_{+}is a $\left(\left\lfloor\frac{\Delta}{2}\right\rfloor+1\right)$-limited packing set in G. This implies $\left|V_{+}\right| \leq L_{\left\lfloor\frac{\Delta}{2}\right\rfloor+1}(G)$ and hence $\alpha_{s}^{2}(G) \leq 2 L_{\left\lfloor\frac{\Delta}{2}\right\rfloor+1}(G)-n$.
(ii) According to the proof of Theorem 2.4, we have $\alpha_{s}^{2}(G) \leq n-2 \gamma_{\times\left\lceil\frac{\delta}{2}\right\rceil}(G)$.

Now let D be a minimum $\left\lceil\frac{\Delta}{2}\right\rceil$-tuple dominating set in G. We define $f: V \rightarrow\{-1,1\}$ by

$$
f(v)=\left\{\begin{aligned}
-1 & \text { if } v \in D \\
1 & \text { if } v \in V-D
\end{aligned}\right.
$$

By the previous lemma, we conclude that $f(N[v])=|N[v] \cap(V-D)|-|N[v] \cap D| \leq \Delta-$ $\left\lceil\frac{\Delta}{2}\right\rceil+1-\left\lceil\frac{\Delta}{2}\right\rceil \leq 1$. Therefore f is a S2IF of G. This implies $\alpha_{s}^{2}(G) \geq f(V)=|V-D|-|D|=$ $n-2|D|=n-2 \gamma_{\times\left\lceil\frac{\Delta}{2}\right\rceil}(G)$.

Considering regular graphs, by the previous lemma, we have the following corollary.
Corollary 3.1. Let G be an r-regular graph of order n. Then
(i) $\alpha_{s}^{2}(G)=2 L_{\left\lfloor\frac{r}{2}\right\rfloor+1}(G)-n$.
(ii) $\alpha_{s}^{2}(G)=n-2 \gamma_{\times\left\lceil\frac{r}{2}\right\rceil}(G)$.

As an immediate result of the previous corollary we obtain the following.
Corollary 3.2. If G is a cubic graph of order n, then
(i) $\alpha_{s}^{2}(G)=2 L_{2}(G)-n$.
(ii) $\alpha_{s}^{2}(G)=n-2 d d(G)$.

In [1], the authors showed that if G is a cubic graph of order n, then $\frac{n}{3} \leq L_{2}(G)$. Moreover, the upper bound $L_{2}(G) \leq \frac{n}{2}$ was presented in [5] for a cubic graph G. Therefore Corollary 3.2 leads to

On the signed 2-independence number of graphs | S.M. Hosseini Moghaddam et al.

$$
-\frac{n}{3} \leq \alpha_{s}^{2}(G) \leq 0
$$

for cubic graphs.

Acknowledgement

The authors are grateful to the referee for his/her valuable suggestions.

References

[1] P.N. Balister, B. Bollobas and K. Gunderson, Limited packings of closed neighbourhoods in graphs, arXiv: 1501.01833v1 [math.CO] 8 Jan 2015.
[2] M. Chellali, O. Favaron, A. Hansberg and L. Volkmann, k-Domination and k-independence in graphs, Graphs Combin. 28 (2012) 1-55.
[3] W. Chen and E. Song, Lower bounds on several versions of signed domination number, Discrete Math. 308 (2008) 1837-1846.
[4] O. Favaron, M.A. Henning, J. Puech and D. Rautenbach, On domination and annihilation in graphs with claw-free blocks, Discrete Math. 231 (2001) 143-151.
[5] R. Gallant, G. Gunther, B.L. Hartnell and D.F. Rall, Limited packing in graphs, Discrete Appl. Math. 158 (2010) 1357-1364.
[6] F. Harary and T.W. Haynes, Double domination in graphs, Ars Combin. 55 (2000) 201-213.
[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, New York, Marcel Dekker, 1998.
[8] M.A. Henning, Signed 2-independence in graphs, Discrete Math. 250 (2002) 93-107.
[9] D.A. Mojdeh, B. Samadi and S.M. Hosseini Moghaddam, Limited packing vs tuple domination in graphs, Ars Combin., to appear.
[10] E.F. Shan, M.Y. Sohn and L.Y. Kang, Upper bounds on signed 2-independence numbers of graphs, Ars Combin. 69 (2003) 229-239.
[11] L. Volkmann, Bounds on the signed 2-independence number in graphs, Discuss. Math. Graph Theory 33 (2013) 709-715.
[12] C. Wang, The modified negative decision number in graphs, Internat. J. Math. Math. Sci. Volume 2011 (2011), Article ID 135481, 9 pages.
[13] D.B. West, Introduction to Graph Theory (Second Edition), Prentice Hall, USA, 2001.
[14] B. Zelinka, On signed 2-independence number of graphs, manuscript.

